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A complete mathematical model has been solved of the steady axially symmetric convective 
diffusion toward the surface of a spherical electrode of radius R rotating at an angular velocity Q 

under the creeping flow conditions Re == QR2q/Tf < 10 and Pe == Q2 R 4q/(12DTf) > 10 by the 
the method of singular perturbations. For Pe > 300 the effect of axial diffusion has been found 
entirely negligible; for 10 < Pe < 300 it causes an increase of local transfer coefficients by 1-10%. 
For Pc < 10 the applied asymptotic method of solution, assuming Pe ~ 1 is no longer applicable. 

Rotating spherical electrode, working under the creeping flow regime, i.e. at very 
low values of the Reynolds numbers, has been utilized recently for accurate measure
ments of diffusivity in high viscosity solutions 1- 3. Corresponding theory2,4 of con
vective diffusion, for the case when the working electrode is an arbitrary axially sym
metric segment of the surface of a rotating sphere, has been elaborated so far only under 
various simplifications typical for the theory of the concentration boundary layer. 
In the work2 this problem was attacked by neglecting longitudinal diffusion and by li
near approximation of the velocity field in the proximity of the electrode surface. 
This solution shall be referred to in the following as the CBL approximation. The 
work4 also neglects longitudinal diffusion but the analysis takes into account complete 
description of the meridional components of the velocity field pertaining to the 
rotating sphere in an unconfined liquid and under the creeping flow regime. Solu
tion4 shall be referred as IS (improved similarity) approximation. For the case that 
the whole surface is the working electrode, the IS approximation leads to an exact 
description of the convective diffusion, not only for the asymptotic case of the con
centration boundary layer, i.e. for Pe -+ 00, but also for the asymptotic case of pure 
diffusion free of the convective effects, Pe -+ O. Nevertheless, a mere qualitative 
analysis of the complete mathematical model of the convective diffusion under the 
given conditions clearly shows that in the region of intermediate Pe numbers the 
effects of the longitudinal diffusion, which had been neglected in the IS approxima
tion, may be fairly large. The aim of the presented paper is to analyse the effect 
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of the longitudinal diffusion under the conditions Pe ~ 1 when the character of the 
existing convective-diffusional processes does not differ from the conditions given 
by the CBL conditions. The analysis is limited to the case when the whole surface 
of the rotating sphere is maintained at constant concentration of the depolarizer 
and when the effect of the longitudinal diffusion thus manifests only at a greater di
stance from the surface of the sphere. 

The employed method of singular perturbations leads to a simultaneous set 
of onedimensional boundary value problems of the boundary layer type. In the solu
tion of this set it turned out useful to combine the analytical and numerical ap
proach. 

FORMULATION OF THE PROBLEM 

The velocity field for the axially symmetric flow of a Newtonian fluid of density l! 

and viscosity rJ, around a sphere of radius R rotating at a constant angular velocity Q 

under the creeping flow regime, Re --+ 0, may be expressed in spherical coordinates 
(r, e, qJ), where e = ° represents the axis of symmetry, as follows 5 -7: 

(1 a) 

(1 b) 

(Ie) 

where ~ = R/r, x = sin e. A more detailed hydrodynamic analysis8 shows that 
an asymptotic description of the velocity field by the above equations is sufficiently 
accurate for practical purposes for Re < 5 + 10. 

Under axially symmetric concentration conditions at the boundaries of the ex
amined system, the azimutal velocity component Vcp has no effect on the course of 
the convective diffusion. Its description thus reduces to a twodimensional elliptic 
partial differential equation. Let us write it down in the form 

(2) 

where the operator 

characterizes the convection and radial diffusion while the operator 

(3b) 
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represents the effect of longitudinal diffusion, neglected in the previous analy
ses2 •4 • 

The meridional variable x = sin e, instead of the angular variable, e, has been 
selected because the polynomial expansions of the meridional dependences, in the 
following taken in the form IalXi, converge faster than those in the form Ia:,e l • 

The radial variable in the form y = B(l - ~), with B = Pe1/ 3 , has been taken because 
for B ~ 1 the concentration field in the form C(y, x) near the surface of the sphere, 
y ~ B, is practically independent of B. In the chosen normalization of the concentra
tion field (see the list of symbols) the boundary conditions on the surface of the 
sphere, y = 0, and at infinity, y = B, take the following form 

C = F(B) for y = 0 (4a) 

C=o for y = B. (4b) 

The function F(p), for an arbitrary p ~ 0, is defined by the integraI2 •4 •9 

(5) 

The boundary conditions considered for the elliptic problem must be supplemented 
by the conditions of symmetry with respect to the axis x = 0 and with respect 
to the equator plane x = 1, e.g. in the form 

axc = 0 for x = 0, resp. x = 1 . (4c, d) 

Local diffusional fluxes on the surface of the sphere, y = 0, are expressed, for the 
given normalization, as 

(6) 

Solution of the above formulated boundary value problem shall be sought in the 
form of an functional expansion of the type 

C = exp (- y3) I xkHk(Y) ' (7) 
k=O.2.4 •... 

where due to the symmetry of the problem with respect to the axis, C( -x, y) = 
= C(x, y), we summ up only over even values of the summation index (k = 
= 0,2,4,6, ... ). Substitution of this expansion into the differential equation (2) 
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leads to an infinite linear system of differential equations for the functions {HI<}: 

For arbitrary functions G, H and for k = 0,2,4,6, ... we have here 

qk[G, H] = k(k + 1) G + (k + 2)2 H , 

For k = 0 we have in Eq. (8) at_ 2 = O. 

The boundary conditions, according to (4a,b) change to 

Ho(O) = F(B) , Ho(B) = 0 

H,,(B) = 0, k = 2,4, 6, ... 

(8) 

(9a) 

(9b) 

(9c) 

(lOa) 

(lOb) 

The condition (4c) is satisfied indentically by the choice of the expansion (7) into the 
even powers xl<. The condition (4d) requires satisfaction of the non-trivial functional 
identity 

~) Hk(Y) = 0 for Y E (0; B) . (11) 

The profile of local diffusional fluxes in the normalization (6) is given by 

Sh(x) = ~ L xlt( -H~(O». 
F(B) k:O.2.4 .... 

(12) 

It is obvious that the set (8) cannot be solved successively, term by term, as in the 
equation for Kit appears, apart from the known Hk - 2 , also the unknown HH2 

function. The infinite set of differential equations (8) is completed by the supple
mentary condition (11). Nevertheless, in the following we shall prove that for B = 00 

there exist simple asymptotic solutions of this set, represented by a series of the 
functions {Ak }. About this set one can find then a perturbation expansion of the 
type 

Hk(Y) = Ak(Y) + L B-J tfJt(y) , B ~ 1 , (13) 
j:2.3.4 .... 
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where t/lHY) are functions independent of the parameter B. These functions can be 
determined already by the term-by-term integration of the corresponding infinite 
set of differential equations. This circumstance shall be made use of, on the one hand, 
for an explicit asymptotic analytical expression of the local diffusional fluxes, and, 
on the other hand, for the analysis of accuracy of the direct numerical solutions of the 
set (8). 

BASIS FOR PERTURBATION 

Already the earlier mentioned CBL and IS approximations2 •4 represent certain 
asymptotic solutions of the problem under consideration for B ~ 1. The CBL ap
proximation is a result of the common application of the Lighthill-Acrivos trans
formation for the axially symmetric case10 •tt : 

CA(X, y) =:' F(oo) - F(y G(x». (14) 

The IS approximation is then an improvement of the former4 for finite values of B: 

C*(x ) = F(B) _ F(B) F(y G(x» . 
A ,y F(B G(x» (15) 

The function G(x) is the principal parameter of the LighthiIl-Acrivos transforma
tion 10.11. It may be found as an integral of the differential equation 

in the form of the following quadrature 

or, for x < 1, in the form of the series 

where 

G(x) = L akxk 
k=0.2.4 •... 

a4 = 69/700 

a6 = 1 151/21000 as = 210951/5390000 

alo =l2 405 974/700 700 00 ... 

(16) 

(17) 

(18) 

(19) 
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In the region B > 2, x < 0·9 there is no apparent difference between both approxi
mations. The IS approximafon C ~ c1, satisfies identically the two boundary con
ditions (4a,b) and the parabolic differential equation 'p[C] = 0 with a small error of 
the order eB, .P[ C1] = o(eB)' The CBL approximation, C ~ CA in contrast, satisfies 
the differential equation .p[ C] = 0 identically, the boundary condition at infinity, 
y = B, however, merely with an error of the already mentioned order eB' 

The CBL and IS approximations of the concentration field may be exprt:ssed 
as power expansions analogous to (7). 
These expansions 

exp(y3)CA(X,y) = L xkAk(Y) (20a) 
k=O,2,4, ... 

exp (y 3 ) C!(x, y) = L xkA:(y) (20b) 
k=O,2,4, ... 

define the series of functions {Ak}, {An. In the following we shall study the 
relationship of these two series of the functions to a series {Hk }, representing the 
exact solution for B ~ 1 by an asymptotic expansion (7) of the problem studied. 

An explicit expression of the functions A:, Ak can be found by an expansion 
of the functions C!(x, y) or CA(x, y) into the Taylor series for a fixed y: 

A~(.r) = exp (y3)[F(B) - F(Y)] 

A~(y) = tI2El 

A!(Y) = a4El - ~1~E2 

A!(Y) = a6El - 2a2a4E2 

The functions Em = Erne}') are defined recurrently by the set 

El = 0(1 - PlO(O 

E2 = 0(2 - PIE! - P20(O 

E3 = 0(3 - Pl E2 - P2 E ! - P3(f.O 

E4 = 0(4 - P!E3 - fi2E2 - P3 E! - P4(f.O . 

(21) 

(22) 

Here, the functions 0(0' O(m = O(m(Y), Pm = Pm(B), (m = 1,2,3, ... ) are the coefficients 
of the Taylor expansions of the functions exp (y3) F(y(l + m and F(B(1 + '»/F(8) 
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with respect to the variable (: 

Particularly 

IY. ( ) = exp (y3) ym dm F(y) 
mY I d m ' m. y 

lY.o(y) = exp (y3) F(Y) 

1Y.1(Y) = Y 

1Y. 2(Y) = - 3/2y4 

1Y.3(Y) = - y4 + 3/2y7 

1Y.4 (Y) = -1/4y4 + 9/4y7 - 9/Sy1° . 

From (24) and (25) it is apparent that for B -+ 00 we have Pm(B) --+ 0: 

Mitschka, Wein : 

(23) 

(24) 

(25) 

(26) 

The derivatives of the functions A~, A: in the origin, y = 0, are given, according 
to (21)-(25), by the relations 

A~'(O) = -1 

A;'(O) = a21'1 

A!'(O) = a41'1 - a~1'2 

A!'(O) = a61'1 - 2a2a41'2 

(27) 

where I'm = E;"(O) are the derivatives of the functions Ern(Y) in the point y = O. 
As a special case 

1'1 = 1 - PI 

1'2 = - PII'I - /32 

1'3 = - PIl'2 - P21'l - P3 (28) 

1'4 = - PII'3 - P21'2 - P31'l - P4· 
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The functions Ak(Y) are special cases of the functions A:(y) for B = 00, where 
we have the identity Em = O(m(Y) , as, according to (24) one can write Pm = 0 for 
B = 00. As a special case 

A~(O) = -1, A~(O) = ak' k = 2, 4, 6, .. , (29) 

The course of the functions A~, A;, A! for several selected values of the para
meter B is shown graphically in Figs la,b,c together with the corresponding asympto
tic courses of the functions Ak for B = 00. From these figures it is apparent that for 
B > 2 the difference between A; and corresponding Ak is very small. Only in the 
close proximity of the boundary point, y -+ B, the individual functions A: for finite 
B separate from the course for B = 00 and drop sharply to zero at the point y = B. 

This qualitative finding may be expressed quantitatively by the following asympto
tic estimates for y ~ B, B -+ 00: 

(30a,b) 

where 

(31) 

Putting the right hand sides in equation (8) equal zero means, in the physical inter
pretati on, neglecting the effect of longitudinal diffusion. Corresponding system of the 
differential equations (8) with zero right hand sides and with the boundary condi
tions (JOa,b) is satisfied for finite values of B by neither Ak nor A;. Although the 
functions Ak identically satisfy the set of differential equations 

(32) 

they do not satisfy the boundary conditions (lOb). On the contrary, the functions A; 
satisfy the boundary conditions A;(B) = 0, but do not satisfy the differential equa
tions (32). It can be shown that both mentioned deviations are of the same order 

(33a,b) 

see also the estimates (35a,b). 

Nevertheless, both A: and Ak represent the asymptotes of the sought solution H k • 

since in the asymptotic sense they satisfy for B -+ 00 both the differential equations (8) 
and the boundary conditions (lOa,b). The problem of the asymptotic fulfilment of the 
boundary conditions for B ~ 1 and their effect on the course of the global solution 
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is examined in more detail in the Appendix. Since for y ~ B, B ~ 1 the following 
estimates clearly hold 

(34a) 

(34b) 

the character of the asymptotic approximations Ak --+ H k , or A: --+ H" for y ~ 
~ B, B --+ 00, may be expressed in a greater detail by the estimates 

(35a) 

(35 b) 

where the terms 0(B-2) are in both cases identical and the terms O(wk ), O*(wk) mutual
ly differ. Because for an arbitrary finite i the terms of the order O(Wk) are subdominant 
with respect to the terms of the order O(B- i), it is possible (and there is no other 
way) to neglect them in the construction of the asymptotic power expansion repre
sented by Eq. (13). 

PERTURBATION EXPANSION FOR B ~ 

In the Appendix it is shown that for the set of differential equations of the type (8) 
it is not important, in case that B ~ 1, if the exact boundary condition at infinity, 
y = B, is replaced by the condition H k ( 00) = 0, or, on the contrary, by the condition 
Hk((l - A) B) = 0, where A ~ 1. 

The perturbation solution of the set (8) for B ~ 1 shall therefore be sought in the 
form (13) with the modified boundary conditions Ho(O) = F(oo) = r(4/3), Ho(oo) = 

= 0 and Hk(O) = Hk( (0) = 0 for k = 2,4, ... For an arbitrary finite y ~ B the 
sum on the right hand side of equation 

00 

(B - yt 2 = I (j + 1) B- 2 -JyJ (36) 
j=O 

converges. Substitution of the expansions, according to (13) and (36), into leads 
to the following recurrent set of equations for the functions IH 

(37) 

where for k = 0,2,4, ... , j = 2,3,4 ... we have 
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Q~ = g.i\-2[I/I~+2] + qk[Ak, Ak+2] 

Q; = 9t'k-2[I/I~-2] + 2yqk[Ak, Ak+2] 

Q: = 9t'k-2[I/I:-2] + 3y2qk[Ak' Ak+2] + qk[I/I~, I/I~+2] 

815 

Q~ = 9t'k-2[I/I~-2] + 4y3qk[Ak' Ak+2] + 2yqk[I/I~, I/I~+2] + qk[I/I~, I/I~+2]' (38) 

The homogeneous boundary conditions (1 Ob) shall be modified in the sense of pre
ceding considerations to the form 

I/IL(Y) = 0 for y = 0 

exp (y3) I/ILCr) -+ 0 for y -+ 00 • 

(39a) 

(39b) 

The set (38) with the boundary conditions (39a,b) may be solved term-by-term as 
individual boundary value problems, as shown in more detail in the Appendix. 
The algorithm of the recurrent solution of the set (37) may be clarified by the fol
lowing scheme 

(AD, A2) -+ (I/I~, I/I~) 

t '" 
(A2' A4) -+ (I/I~, I/ID -+ (1/16, I/Ig) 

t '" 
(A4' A6 ) -+ (I/I~, I/I~) -+ (I/Ii, I/In -+ (I/I~, 1/16), (40) 

where the arrows show the direction of proceeding from the already known functions 
to the functions being determined by solving Eq. (37). 

For the physical interpretation of the solution, i.e. determination of the local 
diffusional fluxes, it is important to know primarily the values of the derivatives 
of the functions I/It at the point y = O. According to (6), (12) and (13) we have 

Sh(x) = ~- L Xk[ -A~(O) + L B-JJeU, 
. F(B) k=0,2,4.... j=2.3.4 .... 

(41 a) 

where 

).f = - dl/lL(y)/ . 
dy y-O 

(41 b) 

The parameters JeL can be expressed, according to Eqs (A6), (A8), directly as linear 
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functionals of the corresponding right hand sides Q~ in the differential equations (37) 

(42) 

where fZ': designates the operator fZ~ for B = 00, see Eq. (A6) in the Appendix. 
In the special case of k = 0, j = 2,3 we have QUY) = 4A2(Y) = 4a2y, Q~(Y) = 

= 8y A2(Y) = 8a2y2 and from (AB) thus 

A~ = (r(4/3»~1 f: exp (_S3) J: (4a2t) dt ds = (Sr(4/3)t 1 (43a) 

A~ = (r(4/3)tl f:exp(-S3) J:(8a2t2)dtdS = 4/1S. (43 b) 

Also in the case k = 2, j = 2, 3 the calculation of A~ can be performed relatively 
easily since we have 

9lo[t/tj] = 9/2y2(dt/tb/dy - 3y2t/tb) = 9/2y2 [ -Ab + J: Qb(t) dtJ . (44) 

Thus 

Q~(y) = 9/2y2( -A~ + 2a2y2) + 6a 2 y + 16(a4Y + 3/2a~y4) (45 a) 

Q~(y) = 9/2y2( -A~ + 8!3a2y3) + 12a2y2 + 32(a4y2 + 3/2a~yS). (45 b) 

Resulting values given by equations 

A~ = f: exp (_S3) r;2(s) {fit) Q~(t) dt ds 

A~ = f: exp (_S3) fi 2(s) {f2(t) Q~(t) dt ds , 

(46a) 

(46b) 

were determined by numerical quadrature while the function fiy) was evaluated 
from the series (A4) and, for y > 1·2, from the asymptotic expansion (A5). 

A numerical experiment, in accord with the asymptotic estimates according 
to (AI2), has proven that for the determination of the parameters A{ (k = 0, 2 
and j = 2, 3) with the accuracy to four decimal places it suffices to integrate over 
the interval of s E (0; 2·2). Numerical values of these parameters are summarized 
in Table I. 

For the remaining combinations k, j the evaluation of t/tt mandates substitution 
of the functions t/t{-2, t/tt2, t/t~~~, etc. into the integrals fZ':[Qn according to the 
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recurrent formula (40). These functions, as show the order of magnitude estimates 
from (AI2), suffice roughly over the interval Y E (0; 3), while for Y > 1 their repre
sentations need not be very accurate. A suitable method of finding the necessary 
representation of the functions l/IL is their superposition in the form of a power 
expansion with the known first derivative (-AD and determination of additional 
coefficients from the already once differentiated equation (AI) respectively (A7). 
This method served to find numerical estimates }.~, ).~ also shown in Table I. 

NUMERICAL SOLUTION 

lnitially we had expected that the set oflinear differential equations with the boundary 
conditions on a finite interval of the type (8), (IOa,b) should pose no problem, 
when using the routines in the Fortran SSP of the IBM/360 system. This expecta
tion, however, failed to materialize. Any progress in tackling the three major obsta
cles that gradually emerged and on which we shall now report would be unthinkable 
without a parallel study of the problem by the methods of asymptotic analysis, describ
ed in the preceding paragraphs and in the Appendix. 

The first problem was the fact that in the search for a solution in the "natural" 
form C = LXkWk(y) for B> 2·5 the behaviour of the set of the functions wiY) 
was little sensitive to the change in the initial conditions. The theoretical explanation 
for this observation rests in the fact that the course of the functions Wk(y) may be 
qualitatively modelkd in the form yk exp ( - y3) and thus we are dealing with ex
tremely fast decaying functions. This problem was overcome by substitution ac
cording to (17) with the weighting function exp ( - y3). This ensures polynomial 
behaviour of the functions Hk(y) as indicated by the found asymptotic representations 
of the functions Hk by the functions A k , respectively A:. Introduction of the above 
weighting function, of course, extremely increased the sensitivity of the numerically 
generated course of the functions Hk in region y ~ 1 on the initial values Hk.(O), 

TAIlLE I 

Parameters of perturbation expansion according to Eq. (41u) 

-~----- -------------------------------

k o 

1'0000 
0·2240 
0'2666 

( -0'35)Q 

2 

-0'3000 
0'4758 
0·5792 

4 

-0'0986 
0·55 
0·60 

--------------------------------

Q Obtained by empirical correlation of results of numerical integration. 
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H~(O) and on the round-off errors of the numerical integration over the intervals y E 

E (0; 1). All integrations were carried out in the forward manner using the Runge
-Kutta method and the standard procedures of the IBM-360 system Fortran 
library. For the removal of instabilities of the type characterized by the estimate 
(AI6) it was necessaey (and it proved sufficient) to work in region BE (2; 6) using 
double precision arithmetic while ajusting the parameter EPS, characterizing in the 
library procedure DRKGS the relative accuracy to 10- 10• For the given boundary 
conditions H k(B 1 ) = 0 with fixed Bl < B the above procedure yielded value of the 
initial derivative H k(O) with relative accuracy better than 10- 8. 

The second problem in the numerical integration of the set (8) with the boundary 
conditions (10a,b) was associated with the fact that in the boundary point y = B 
the functions on the right hand side of the differential equation (8) have singularities, 
unless we have exactly that qk = O«B - y2)) for y -+ B. The exact solution though 
ensures finite values of the expression «B - yt 2 qk) for y -+ B, but for the above 
iterative procedure with initially guessed values it is not certain that qk(B) -+ 0 for 
y -+ B. The mentioned singularity then makes impossible to complete the integra
tion up to the boundary point. For the numerically investigated region of B E (2; 6) 
this difficulty was circumvented by using an alternative boundary condition in the 
form H k(B1) = 0 with a suitably selected Bl < B. For B > 2·2 it was proven by nu
merical experiments, that in order to find H~(O) with an accuracy of the order 10- 8 

it is sufficient to fix B1 at a value Bl = 2·1. This empirical findings is in accord with 
the theoretical estimate of the error H~(O) from (AI2). In the numerical solution 
of the problem in region BE (1'5; 2) it posed no problems to solve the task iteratively 
with successive halving of the interval (B1 - B). The accuracy of H~(O) to six digits 
was achieved already for Bl/B = 0·98. 

The third, most serious problem was the fact that the set (8) consists for a finite 
value of the parameter B of an infinite number of equations for an infinite number 
of unknown function Hk and this set cannot be solved term-by-term. A possibility 
how to reduced this infinite set to a manageable number of finite subsystems of N 
equations, k = 0,2, ... , 2N - 2, is to replace in the last equation of the set the unknown 
function H2N by some suitable approximation, HiN' One solves a set whose terms 
for k = 0, ... , 2N - 4 have an exact form (8) and the equation for k = 2N - 2 is 
is approximated in the following manner I t 

(47) 

From the perturbation scheme (13) it is apparent that for a change of the initial 
guess HiN -+ HiN + (j2N' in linear dependence on ()2N will correspondingly change 
just the coefficients (I/I~N-k' I/I~~~k)' (n = 2,4, ... , 2N) of the perturbation expan
sion of the functions (H2N - 2, ... , Ho) from (13). For j + k < 2N the coefficients 
"'~ remain unaffected by the change of (j2N' The function H 2N - n will thus be affected 
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only by the increments of the order O(B- n), n = 2,4, ... , which in case of B --+ 00 

is certainly a positive finding representing a starting point for the numerical reali
zation of the perturbation analysis. 

For the set of two and three equations, N = 2, respectively N = 3, we took as 
an approximation of H~N corresponding asymptote A 2N. This approach seemed 
logical, since for B ~ 1 A2N is also a legitimate approximation of the function H 2l'i. 

Nevertheless, in region BE (2; 4) this guess lead unexpectedly to clearly incorrect 
courses of the functions H 2N - 2 , H 2N - 4 • 

In the following stage of the calculation we thus took for the set of two and three 
equations, N = 2, respectively N = 3, the trivial approximation HiN = 0. The 
numerical experiment resting in comparison of results for N = 2 and N = 3 showed 
that by the given procedure H 2N _ 2 is approximated already in the whole studied region 
BE (2; 6) with very good accuracy. The characteristic course of the functions Ho, H2 , 

114' determined by the given procedure in region of intermediate values of B, is 
shown graphically in Fig. 2 in comparison with corresponding asymptotes Ao, A 2 • 

A4 • 

RESULTS AND DISCUSSION 

The result of the numerical solution of the set (8) with the boundary conditions 
(lOa,b) are primarily the data on the derivatives H~(O), k = 0,2,4, ... Corresponding 
results of the analytical solution are data on the parameters A~(O), },;, A~, k = 0,2,4, 
summarized in Table 1. For comparison of the two alternative solutions of the same 
problem, we shall introduce an auxiliary function 

(48) 

which sufficiently sensitively reflects even small differences of various approximations 
for large values of B, see Fig. 3. 

Asymptotic courses Bk(B), according to the analytical approximation (13), are 
given by the following dependences 

(49) 

shown for k = 0, 2, 4 in Fig. 3 by straight lines. Empty points in the same figure 
represent the result of numerical integration of two equations (N = 2; k = 0,2), 
full points show the result of integration of three equations (N = 3; k = 0,2,4) 
of the set (8). 

For k = ° there is no significant difference between both numerical solutions, 
nor is there such a difference for the lowest value of B considered, B = 2, where 
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FIG. 1 

Courses of functions A;(y), k = 0,2,4 in the 
neighbourhood of the boundary y = B. N um
bers 1, 2, 3, 4 designate the courses for 
B = 2, 2'5, 3, 3'5, label 5 designates the 
case B = 00 when A; = Ak 

FIG. 2 

Courses of functions Ak(y) and Hk(y), k = 

= 0, 2, 4 near the origin, y = O. Solid lines 
indicate courses of the asymptotes Ak(y), 
broken lines courses of the functions Hk(y) 
for B = 4, determined by numerical integra
tion with the approximation H~(y) = O. 
Numbers 1, 2, 3 designate the functions 
for k = 0, 2 and 4 
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the shown differences correspond to about 1·5% difference in the value of H~(O). 
Numerical results of e2(B), for N = 2, respectively N = 3, however, indicate con
siderable discrepancies suggesting that the data on ek for k = 2N - 2 should be 
taken with caution. Nevertheless, the differences between the analytical approxima
tion (49) and the results of the numerical integration for N = 3 represent for B = 3 
less than 5% change in values of H;(k). The data on e4(B), obtained by numerical 
integration for N = 3, cannot be regarded as quantitative. It seems adequate in this 
case to confine the approximation to an increment of the order O(B- 2) 

(50) 

since the differences between the analytical approximation and the result of the 
numerical integration suggest that for B < 3 the increments of the order O(B- 3 ) and 
O(B-4) are already comparable. On the contrary, for k = 0 are numerical results, 
for N = 3, reliable enough that their processing by linear regression following the 
empirical equation 

(51) 

leads to values for Co, c2 , c3 identical to three decimal places with the analytical data 
on A~(O), A.~, },~. Accordingly, one may take as adequate also the approximation 
C4 == ).6, shown also in Table I. 

For k = 6, 8, 10 '" we have no data on the perturbation parameters H~(O) but 
we know that for B -+ OCJ we may write H~(O) -+ A~(O). It is proper to include also 
this information into the resulting expression of Sh(x) following the asymptotic 
scheme (4Ja): 

Sh(x) = ~. [(1 + 0'224B- 2 + 0·267B- 3 - 0'35B- 4) - 0'300x 2 • 

F(B) 
. (l-1'58B- z - 1.93B- 3 ) - 0'099x4(1- 5·6B- 2 ) - 0'055x6 - 0'039x8 -0·032x10] • 

(52) 

We estimate that the relative accuracy of this resulting expression in region B ~ 3, 
x < 0'9 is better than ± O' 5% and in region B ~ 2, x < o· 8 better than ± 2%. 

The region B ~ 2, x < 0'9 represents a limit where the considered type of ap
proximate solution still enSUf{S the acceptable accuracy of the Sh(x) data. 

The effect of longitudinal diffusion on local transfer coefficients, represented 
by the dependence Sh = Sh(x), is not very large in region of validity of the expres
sion (52), B > 2. This is apparent from Fig. 4 showing the profiles of Sh(x) com
puted from (52) in comparison with the courses, according to the CBL approxima
tion: 
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ShA(X) = B G(x)/F( (0) (53) 

and the IS approximation 

Sh!(x) = B G(x)/F(B G(x» . (54) 

The results of this work on the effect of longitudinal diffusion in the bulk liquid 
on the local transfer coefficients may be summarized as follows: 

1) Relation (52) is correctly applicable under the conditions wht:n B G(x) > 2. 

2) The effect of the longitudinal diffusion in the bulk liquid is entirely negligible 
(below O' 5%) for B > 6'6, i.e. for Pe > 300. For B = 3 it leads to increased transfer 
coefficients by 3%, for B = 2 by 10%. At lower values of B the presented analysis 
is no longer correct. 

3) The effect of longitudinal diffusion somewhat expands the region near the pole 
of the rotating sphere where the surface is uniformly accessible in the transport 
sense. 

-6r-~------------------~ 
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---.-------
• • 

2 -
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• • 
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• • 

• • 
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OL------------~ 

FIG. 3 

A comparison of the analytical and numerical 
solution of the set (8). Solid lines - linearized 
analytical estimate 8k from (49), (50), empty 
points - numerical integration for N = 2, 
full points - numerical integration for 
N = 3. Broken lines - courses of the 
functions Ilk(B) implemented into (52). 
Numbers 1, 2, 3 designate data on 8k 

for k = 0, 2, and 4 

4r--------------------------, 
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FIG. 4 

Longitudinal profiles of local transfer coef
ficients. Solid lines - results of perturba
tion analysis according to Eq. (52) incor
porating the effect of longitudinal diffu
sion. Broken lines - IS approximation, 
dotted lines - CBL approximation. Numbers 
1, l' designate the courses for B = 2, 
numbers 2, 2' the courses for B = 3 
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It should be noted that the presented analysis is limited to the case when the whole 
surface of the sphere represents the working surface of the electrode_ In electro
chemical practice, however, a more common case is such that the electrode is situated 
only in the polar region of the rotating sphere and its terminating edge falls into the 
latitude x = Xo- In such case the effect of longitudinal diffusion in the proximity 
of the edge of the electrode is substantially stronger than the effect of longitudinal 
diffusion in the bulk liquid considered in this work_ 

The overall transfer coefficient averaged over the surface of the rotational polar 
electrode is then claerly given by 

S7i = fXO Sh(x) x dxlf xO x dx _ 
o ~(1 - XZ) 0 ~(1 - XZ) 

(55) 

Substitution of the resulting expression (52) into the definition (55) and confining 
the result to the terms O(x~), O(B-Z) leads to the following expression of the mean 
diffusional fluxes 

S7io(xo, B) = ~ [1 + 0-224B-'z - 0-15x~(1 - 2-0B- Z)] = 
F(oo) 

= 0-489Sc 1/ 3Re2/3 [1 - 0-15x~ + 0-51B-2(1 + 1-3x~)] _ (56) 

The effect of longitudinal diffusion in the immediate proximity of the edge of the 
electrode was studied by the method of singular perturbation by Smyrl and New
man 12 _ Their results may be recalculated to the form 

(57) 

where ShsN represents the mean diffusional fluxes, including the edge effects and Shoo 
represents S1io for B = 00_ It is seen that the edge effect of the longitudinal dif
fusion which is of the order of o(B- 3 / 2 ), is dominant for B - 00 in comparison 
with the effect of longitudinal diffusion in the bulk liquid, the latter being of the order 
of o(B-Z)_ It is obvious that for BE (2; 6) the effect of longitudinal diffusion in the 
bulk liquid is entirely negligible in comparison with the edge effect_ 

LIST OF SYMBOLS 

ak 

Ak,At 
B = Pe l / 3 

c(x, y) 

co(x) 

coefficients of expansion for G(x), Eq. (19) 
characteristic functions of CBL and IS approximation, Eq. (20a,b) 

concentration field of depolarizer 
concentration on the surface of sphere (y = 0) 
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c oc concentration at infinity 
C = [(c - coo)/(co - coo)] F(B) 
C A similarity (CBL) asymptote of concentration field for B-> 00, 

Eq. (14) 

D 

im 
F(C;) 

G(x) 

Hk 

J = D 0rClr=R 
Jf"k 
Pe = Sc Re2/12 = UMR/D 
qk 
9ik 

R 
Re = QR2 (//" 
Sc = ,';{/D 
Sh = JRD- 1(cC() - ('0)-1 

UM = QR Re/12 
(V r• 1'6. I'",) 

x = sin e 
y .~ B(I - R/r) 

I:k 

" J·t 
Vlt 

Q 

APPENDIX 

improved similarity (IS) approximation of concentration field, 
Eq. (15) 
diffusivity of depolarizer 

eigenfunction of tqe operator Jf", Eq. (A2), (AJ) 
similarity concentration profile, Eq. (5) 

parameter of similarity transform, Eq. (17) 
characteristic function of perturbation solution, Eq. (17) 
diffusional flux on the surface of the sphere 
differential operator of perturbation solution, Eq. (9b) 

PecIet number 
operator, Eq. (9a) 

operator, Eq. (9c) 
radius of sphere 
Reynolds number 
Schmidt number 
local Sherwood number 

characteristic meridional velocity of creeping flow 
physical components of velocity in spherical 
coordinates 
meridional variable 
radial variable 
parameter defined by Eq. (48) 

viscosity 
terms of perturbation expansion for diffusional fluxes, J:::q. (41a,b) 

terms of perturbation expansion for concentration field, Eq. (13) 

density 
angular velocity of rotation of sphere 

Let 1jI* = 1jI*(y) be a solution of a differential equation X'm(IjI*] == q on an interval y E <O;B) with 
the homogeneous boundary conditions 1./1* = 0 for y = 0 and exp (- y3) 1jI*(Y) ->- 0 for y ->- B. 

Here Jf" m' m = 0, 1,2, ... is a differential operator defined by Eq. (9b) in the main text. Let the 
right hand side q = q(y) be integrable on every finite interval y E (0; .I). Formal solution of this 
boundary value problem may be written in the form 

for finite B as well as for B = XJ. 

The core of the solution is a function 101' de'incd as an integral of the Cauchy problem 

f:;' + 3y2 j:., - 3myfm = 0 (A2) 
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with the initial conditions 

fm(O) = 0, f:n(O) = 1 . (A3) 

For m = 0 we have lo(Y) = F(y), see Eq. (5) in the main text. For an arbitrary m ~ 0 one can 
find f;" in the form of a series with infinite radius of convergence 

f (y) =)' 1 + -- y3 1 + ... + y + O(y 1+ , ( m - 1 ( In - 1 - 3i 3)) 3· 7) 
m 4 (i + 1)(4 + 3i) 

(A4) 

where i = 0, I, 2, ... From (A4) it is apparent that for m = 1,4, (3j + I), ... I mel') is an finite 
polynomial O(ym). For m> I, y> (m/3)3/2 an effective approximation of the function 1m is 
gived by the asymptotic expansion in the form 

f ( .) - ,m (1 m(m - 1) -3 (1 (m -1 - 3i)(m - 3i) -3)) (A5) 
m J ~ Xm) + y + ... + () Y • 

9 9 1 + i 

The constant "m should be found by an independent method, i.e. matching the courses (A4) and 
(A5) in the neighbourhood of y ~ (m/3)3/2. In the special case "2 = 0·990, "4 = 0·447. 

The derivative ",*'(0) of the solution ",* at the pointy = 0, can be expressed, according to (A1), 
by the following linear functional 

whose argument q = q(y) is the right hand side of the solved differential equation ;;r m[",*j = q. 

In the special case m = 0 the solution of the problem under investigation may be expressed 
according to (A1), in a somewhat simpler form 

(A 7) 

where 

(A8) 

Our main aim is to find the effect of the parameter B, delimiting the upper limit of the definition 
interval of the function ",*, on the behaviour of this function in case that B ->- 00. Let us keep 
the same meaning of the symbols ",., ","'(0) for finite B while using the symbols", = ",(y) and ",'(0) 
for the solution and its derivative at the point y = 0 and for B = OC). 

It can be seen easily that following identities hold in view of (AI) and (A6) 

I/I(y) - t/I*(y) = - exp (y3) f m(Y) SB[ q] 

1/1'(0) - 1/1*'(0) = SB[q] , 
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where 

Assuming a power law course of the right hand side q(y) '" yP we have for B ~ clearly 
the following asymptotic estimate 

(AI2) 

Substitution of the estimate (A12) into the right hand sides of Eqs (A9), (AlO) we arrive at the 
asymptotic estimates from which it is apparent that for sufficiently large value of the parameter 
B the course of the function is neither globally, for y ~ B, nor locally, for y ~ 0, significantly 
dependent on the actual value of B, where we had stipulated the boundary condition 

",*(y) -+ 0 for y -+ B . (A 13) 

In cases considered in the main text it is important to know the deviation of two solutions '111 
and'll 2 with the boundary condition (All), formulated in the point y = B l' respectively y = B 2' 

Since Sa[q] is for fixed q a decreasing function of the argument B and according to (A9), (AlO) 
we have 

"'1(Y) - "'2(Y) = -exp (y3 ) fm(Y) (SaJq] - Sa,[q]) 

",~(o) - "';(0) = Sa,[q] - Sa2[Q] 

(A14) 

(A15) 

the shift of the boundary condition (A13) from the point Bl into B2 < Bl leads to relative 
errors in 'II 1 (y) for y ~ B2 and and in '111(0) which are smaller than Sa, [q]. We note that with the 
power expansion of the right hand side q(y) '" yP the mentioned relative deviations amount, 
for m ;::;; 6, p ;::;; 10, according to the numerical calculations, to less than 10- 10 already for B = 3. 
It may be said that for the studied class of problems B ;;;; 3 represents actually infinity. 

From Eqs (A9), (A10), however, it is apparent also the following property of the solution 
of the given class of problems 

(A 16) 

where 'Ill' '112 now represent two solutions with different initial conditions. For the numerical 
solution of the boundary yalue problem one usually uses iteration with a guessed initial value 
of the derivative. Eq. (A16) indicates how sensitive the result is to already minute deviations 
in the estimates of the first derivative in the origin. It is thus clear that in an analogous manner 
does the solution react in region y ~ 1 to any numerical error, e.g. the round-off error in region 
y < 1. For instance an error ± 10 - 5 in the value of 'II(y) in the point y = 1 leads to deviations 
of the order of magnitude ± 105 in the point y = 3. 
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